If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+100w-600=0
a = 4; b = 100; c = -600;
Δ = b2-4ac
Δ = 1002-4·4·(-600)
Δ = 19600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{19600}=140$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(100)-140}{2*4}=\frac{-240}{8} =-30 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(100)+140}{2*4}=\frac{40}{8} =5 $
| y-3+3y+11=180 | | 2000x+400=16000 | | 24=13z=4z+6 | | 3(x+5)+2x=20+5 | | 62+47+x=180 | | 1,3x+2.7=0.8x-1.05 | | n =223.4 | | -36-5n=3(-4n-5) | | -35=8f-139 | | |8x-12|+21=17 | | (c+3)/5=25 | | 10m+18=8m+4 | | 16(4-3m)=96(-m/12+1) | | 5n+40=-7(n+8) | | 4(t+20)=⅕(20t+400) | | 1/4x-(x+1/2)=1/16(x-2) | | 10m+18=8m | | -21=-7+2y | | 5x-9x-6=24 | | 15x+60=30x-45 | | 5(y+25)=135 | | 1/2x+2x=6 | | -1/2(10x-10)=60 | | 7y+3–y=−12+6y+14 | | 13x–9=17 | | (3x+18)(9x-27)=90 | | 3(t+5)+-7=-13 | | 19-13n=-17n-5 | | 4.4x+2500=19.36+50x | | 3−8x=8/5x | | 7x+5+9x+5+90=180 | | X²-7x+25=0 |